The purpose of this study is to investigate the survival and behaviour of retinal pigment epithelium sheets transplanted onto hydraulically debrided Bruch's membrane. Uncultured retinal pigment epithelium sheets obtained from male cats and sandwiched between two gelatin sheets were transplanted onto the tapetal area of female cats after native retinal pigment epithelium was debrided. For controls, the gelatin carrier was transplanted after debridement. Each transplant or control specimen was analyzed histologically and immunohistochemically. Transplanted male retinal pigment epithelial cells were identified by in situ labelling of the cat Y chromosome. Over half of the transplants appeared as retinal pigment epithelium multilayers in the subretinal space. Retinal pigment epithelium pigment dispersion into the subretinal space was seen in most of the transplants, and retinal pigment epithelium pigment infiltration into the neural retina was seen in all 7-day survival transplants. A few condensed darkly stained retinal pigment epithelium nuclei and Terminal Transferase dUTP Nick End Labelling-positive retinal pigment epithelium cells were observed in all transplants. Cellular retinaldehyde-binding protein was present up to day-7 in most transplanted RPE cells. In both transplant and control specimens, the antibody against the Ki-67 nuclear antigen labelled a few retinal pigment epithelium cells at day-3. Terminal Transferase dUTP Nick End Labelling-positive outer nuclear layer nuclei were most frequently observed at day-1 but were much less frequent at day-3 in both transplants and controls. The survival and effectiveness of retinal pigment epithelium sheet transplants appeared similar to the retinal pigment epithelium microaggregates transplants conducted previously in this model.