In order to theoretically research the tooth surface maximum contact stress of a Cylindrical Gear with Variable Hyperbolic Circular-Arc-Tooth-Trace (VH-CATT), the computing formula of maximum contact stress of VH-CATT cylindrical gear is investigated according to Hertz formula in this paper. Insufficient contact fatigue strength will lead to pitting corrosion, plastic deformation of tooth surface and other damages. Therefore, the maximum contact stress of tooth surface must be carried out. The contact stress calculation formula is particularly considering the effect of normal force, total carrying length, synthetical curvature radius, and position angle. The present work establishes analytical solutions to research the effect of different parameters for the contact stress of VH-CATT cylindrical gear incorporating elastic deformation on the tooth surface, and which have shown that the different module, transmission ratio, pressure angle, tooth width, and the cutter head radius have a crucial effect on the contact stress and contact ellipse of VH-CATT cylindrical gear along the tooth width direction. Moreover, a finite element analysis is carried out to verify the correctness of the theoretical computing formula of contact stress of VH-CATT cylindrical gear. By contrast with the theoretical calculated value and the stress value of finite element analysis, its error is very small. It is indicated that the derived formula of contact fatigue strength of VH-CATT cylindrical gear has high accuracy and can accurately reflect the real contact stress value of tooth surface, which is beneficial for research on tooth break reduction, pitting, wear resistance and fatigue life improvement of the VH-CATT cylindrical gear. The study results also have a certain reference value for the design and check calculation of the VH-CATT cylindrical gear.