A mathematical model of the axis of the satellite, cantilevered in the cheek of the carrier of the planetary gear, is presented. The axis of the satellite is presented in the form of a beam on an elastic base. The influence of the flexibility of the axle and the drive elements mated with it on the distribution of the load over power flows is considered. The Leibniz formulas and the Euler method were used to obtain the model. The coefficient of uneven load distribution over power flows is obtained by solving a system of displacement compatibility equations, including deformations of the wheel teeth, rolling bearing, satellite axle and mating parts, taking into account the initial non-adherence of the teeth due to gear manufacturing errors. The load capacity of a planetary gear with cantilever axes of satellites is analyzed depending on the number of power flows. Keywords: planetary gear, deformation, cantilever axle, load distribution. fplehanov@list.ru, alexandrsun4009@gmail.com
Read full abstract