During the axial modification in helical gear form grinding, the contact line between the grinding wheel and the gear constantly changes, and the additional radial motion can cause a “tooth surface twist” phenomenon. An optimization method for tooth surface twist error was proposed to address this. Based on the gear meshing principles, a mathematical model for axial modification in form grinding was established to solve for the instantaneous contact lines at various positions on the actual modified tooth surface. By analyzing the influence of the grinding wheel installation angle on the axial modification contact line, an optimization model was constructed to reduce the twist of the transverse profile, reduce the twist of the flank profile, reduce the helix deviation, and improve the form grinding efficiency. The practical implications of this research are significant, as the Particle Swarm Optimization (PSO) algorithm was employed to optimize the form grinding parameters, leading to a method that effectively reduced tooth surface twist error and improved the form grinding accuracy of the modified tooth surface.
Read full abstract