With improvements in lubrication and material strength, the power transmitted by plastic gears has increased significantly. To develop high-performance transmission systems, it is necessary to gain deep insights into the dynamic characteristics of plastic gears. However, because plastics are viscoelastic materials, they do not obey Hooke’s law, which is the basis of traditional gear dynamic models. In this study, a refined dynamic model for an epoxy gear pair considering material viscoelasticity and extended tooth contact is established, and the differences in the dynamic responses between an epoxy and a steel gear pair are compared with respect to the dynamic meshing force and dynamic transmission error. The results show that: (1) the plastic gear can restrain the meshing impact, it has a generally lower dynamic meshing force than steel gear pair; (2) the position accuracy is the weak point of plastic gears, and this is significantly affected by the rotation speed; (3) the way to indirectly evaluate the dynamic meshing force by measuring the dynamic transmission error, which is often used for metal gears and is less effective for plastic gears.
Read full abstract