Germanium (Ge) nanomaterials have emerged as promising anode materials for lithium-ion batteries (LIBs) due to their higher capacity compared to commercial graphite. However, their practical application has been limited by the high cost associated with harsh preparation conditions and the poor electrode cycling stability in charging and diacharging. In this study, we successfully synthesized crystalline Ge nanorods through the reaction of intermetallic compound CaGe and ZnCl2. Ge nanorods with different morphologies and crystallinity can be obtained through precisely controlling the reaction temperature. When employed as electrodes for LIBs, the Ge nanorods demonstrate exceptional long-term cyclic stability. Even after 1000 cycles at a high rate of 2C (1C = 1600 mA g−1), it exhibits a remarkable reversible capacity of around 1000 mAh/g. Furthermore, such Ge electrode displays excellent cycling performance across a wide temperature range. And it could achieve reversible capacities of 1267, 832, and 690 mAh/g, with the rate of 1C, at temperatures of 20, 0, and −20 °C, respectively. Above all, our study offers a cost-effective approach for the synthesis of crystalline Ge nanorods, addressing the concerns associated with high production costs. And the application of Ge nanorods as anode materials in LIBs over a wide temperature range opens up new possibilities for the development of advanced energy storage systems.