Light Detection and Ranging (LiDAR), which applies light in the formation of a pulsed laser to estimate the distance between the LiDAR sensor and objects, is an effective remote sensing technology. Many applications use LiDAR including autonomous vehicles, robotics, and virtual and augmented reality (VR/AR). The 3D point cloud classification is now a hot research topic with the evolution of LiDAR technology. This research aims to provide a high performance and compatible real-world data method for 3D point cloud classification. More specifically, we introduce a novel framework for 3D point cloud classification, namely, GSV-NET, which uses Gaussian Supervector and enhancing region representation. GSV-NET extracts and combines both global and regional features of the 3D point cloud to further enhance the information of the point cloud features for the 3D point cloud classification. Firstly, we input the Gaussian Supervector description into a 3D wide-inception convolution neural network (CNN) structure to define the global feature. Secondly, we convert the regions of the 3D point cloud into color representation and capture region features with a 2D wide-inception network. These extracted features are inputs of a 1D CNN architecture. We evaluate the proposed framework on the point cloud dataset: ModelNet and the LiDAR dataset: Sydney. The ModelNet dataset was developed by Princeton University (New Jersey, United States), while the Sydney dataset was created by the University of Sydney (Sydney, Australia). Based on our numerical results, our framework achieves more accuracy than the state-of-the-art approaches.
Read full abstract