Conventional environmental-economic power dispatch methods constrain the total amount of emissions of power plants, and they succeed in reducing emissions from the power sector. However, they fail to address the mismatch between emission reductions and the resulting changes in regional air quality. This paper proposes an ecology- and security-constrained unit commitment (Eco-SCUC) model considering the differentiated impacts of generation-associated emissions on regional air quality. A Gaussian puff dispersion model is applied to capture the temporal-spatial transport of air pollutants. Additionally, an air pollutant intensity (API) index is defined for assessing the impacts of emissions on the air quality in regions with differentiated atmospheric environmental capacities. Then the API constraints are formulated based on air quality forecast and included in SCUC model. Moreover, the stochastic optimization is employed to accommodate wind power uncertainty, and the Benders decomposition technique is used to solve the formulated mixed-integer quadratic programming (MIQP) problem. Case studies demonstrate that the Eco-SCUC can cost-effectively improve air quality for densely-populated regions via shifting generation among units and can significantly reduce the person-hours exposed to severe air pollution. Furthermore, the benefits of wind power for air quality control are investigated.