Previous article Next article Second-Order Markov and Reciprocal Stationary Gaussian ProcessesR. N. MiroshinR. N. Miroshinhttps://doi.org/10.1137/1124099PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] S. N. Bernshtei˘n, On the dependencies among random variablesCollected Works, Vol. IV, Nauka, Moscow, 1964, 235–254, (In Russian.) Google Scholar[2] J. L. Doob, Stochastic processes, John Wiley & Sons Inc., New York, 1953viii+654 MR0058896 0053.26802 Google Scholar[3] Benton Jamison, Reciprocal processes: The stationary Gaussian case, Ann. Math. Statist., 41 (1970), 1624–1630 MR0267637 0248.60030 CrossrefGoogle Scholar[4] I. I. Gikhman and , A. V. Skorokhod, The Theory of Stochastic Processes, Vol. I, Springer-Verlag, New York, 1974 CrossrefGoogle Scholar[5] E. Kamke, Differentialgleichungen. Lösungsmethoden and Lösungen, Vol. 1, Chelsea, New York, 1974 Google Scholar[6] E. Wong, Some results concerning the zero-crossings of Gaussian noise, SIAM J. Appl. Math., 14 (1966), 1246–1254 10.1137/0114099 MR0207059 0147.15905 LinkGoogle Scholar[7] E. Wong, The distribution of intervals between zeros for a stationary Gaussian process, SIAM J. Appl. Math., 18 (1970), 67–73 10.1137/0118008 MR0256456 0221.60024 LinkGoogle Scholar[8] R. N. Miroshin, Convergence of Rice and Longuet-Higgins series for a Wong process, Theory Prob. Applications, 21 (1976), 863–866 10.1137/1121103 0374.60049 LinkGoogle Scholar[9] R. N. Miroshin, Asymptotics of the second factorial moment of the number of upward crossings of the line $kt+a$ by a Gaussian stationary process, Vestnik Leningrad. Univ., 23 (1968), 109–120 MR0235612 0165.52602 Google Scholar[10] M. Krein, Sur le problème du prolongement des fonctions hermitiennes positives et continues, C. R. (Doklady) Acad. Sci. URSS (N.S.), 26 (1940), 17–22 MR0004333 0022.35302 Google Scholar Previous article Next article FiguresRelatedReferencesCited byDetails Characterization of Multivariate Stationary Gaussian Reciprocal DiffusionsJournal of Multivariate Analysis, Vol. 62, No. 1 Cross Ref Gaussian reciprocal diffusions and positive definite sturm-liouville operators4 April 2007 | Stochastics and Stochastic Reports, Vol. 55, No. 3-4 Cross Ref Gaussian reciprocal processes revisitedStatistics & Probability Letters, Vol. 12, No. 4 Cross Ref Reciprocal covariance solutions of some matrix differential equationsStochastic Processes and their Applications, Vol. 37, No. 1 Cross Ref Characterization and Classification of Gaussian Second Order Reciprocal Processes Cross Ref Gaussian reciprocal processes and self-adjoint stochastic differential equations of second order2 May 2007 | Stochastics and Stochastic Reports, Vol. 34, No. 1-2 Cross Ref Reciprocal diffusions and stochastic differential equations of second order ∗Stochastics, Vol. 24, No. 4 Cross Ref Multivariate reciprocal stationary Gaussian processesJournal of Multivariate Analysis, Vol. 23, No. 1 Cross Ref On Miroshin’s Second-Order Reciprocal ProcessesJulia Abrahams3 August 2006 | SIAM Journal on Applied Mathematics, Vol. 44, No. 1AbstractPDF (316 KB)The Use of Rice SeriesR. N. Miroshin28 July 2006 | Theory of Probability & Its Applications, Vol. 28, No. 4AbstractPDF (1011 KB)The zero-crossing problem for some nonstationary Gaussian processes (Corresp.)IEEE Transactions on Information Theory, Vol. 28, No. 4 Cross Ref Convergence of Longuet-Higgins Series for Stationary Gaussian Markov Processes of First OrderR. N. Miroshin17 July 2006 | Theory of Probability & Its Applications, Vol. 26, No. 1AbstractPDF (1546 KB) Volume 24, Issue 4| 1980Theory of Probability & Its Applications History Submitted:11 July 1977Published online:17 July 2006 InformationCopyright © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1124099Article page range:pp. 845-852ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics