Impedance tomography (EIT) is an imaging technique that harnesses differences in electrical conductivity to visualize the interior of objects. Despite limitations such as low resolution and nonlinearity of current distribution, its potential in medicine and industry is a source of fascination. The research in this work is a step towards unlocking this potential, focusing on improving the quality of EIT image reconstruction, particularly in bladder modeling. A key element is regularization techniques, including Laplace matrices and the iterative Gauss-Newton algorithm, which balance matching accuracy and image smoothness. In the practical part, simulations were conducted on dense and sparse meshes. Modeling the urinary bladder as a rotational ellipse significantly influences the interpretation of data by algorithms, a crucial factor for the accuracy of reconstruction. Various electrode configurations were also analyzed, revealing the impact of their arrangement on electrical properties and imaging quality. Iterative testing led to identifying optimal electrode placement and grid configuration, underscoring the importance of precise modeling for obtaining high-quality images. The results underscore the critical role of appropriately selecting the regularization parameter in minimizing reconstruction errors.
Read full abstract