Safety requirements and optimal performance of railroad vehicle systems require the use of multibody system (MBS) dynamics formulations that allow for modeling flexible bodies. This investigation will present three methods suited for the study of flexible track models while conclusions about their implementations and features are made. The first method is based on the floating frame of reference (FFR) formulation which allows for the use of a detailed finite element mesh with the component mode synthesis technique in order to obtain a reduced order model. In the second method, the flexible body is modeled as a finite number of rigid elements that are connected by springs and dampers. This method, called finite segment method (FSM) or rigid finite element method, requires the use of rigid MBS formulations only. In the third method, the FFR formulation is used to obtain a model that is equivalent to the FSM model by assuming that the rail segments are very stiff, thereby allowing the exclusion of the high frequency modes associated with the rail deformations. This FFR/FS model demonstrates that some rail movement scenarios such as gauge widening can be captured using the finite element FFR formulation. The three procedures FFR, FSM, and FFR/FS will be compared in order to establish differences among them and analyze the specific application of the FSM to modeling track flexibility. Convergence of the methods is analyzed. The three methods proposed in this investigation for modeling the movement of three-dimensional tracks are used with a three-dimensional elastic wheel/rail contact formulation that predicts contact points online and allows for updating the creepages to account for the rail deformations. Several conclusions will be drawn in view of the results obtained in this investigation.
Read full abstract