AbstractThe hydraulic gradient method is an effective approach for localizing hidden leaks in water supply networks. Relative errors in leakage location depend significantly on head measurement errors, necessitating the use of high-precision pressure gauges with an accuracy class of 0.25 or better. An optimization function, defined as the ratio of the localization relative error to the probability of detection, was used to determine the optimal location for the control section. Dependencies of localization relative error on the pressure gauge accuracy class, section length, and piezometric head are obtained. Presented multi-leakage estimation model enables the assessment of the multi-leakage probability, enhancing decision-making efficiency for emergency repairs in water supply networks.
Read full abstract