AbstractLow-voltage organic transistors are sought for implementation in high volume low-power portable electronics of the future. Here we assess the suitability of three phosphonic acid based self-assembling molecules for use as ultra-thin gate dielectrics in low-voltage solution processable organic field-effect transistors. In particular, monolayers of phosphonohexadecanoic acid in metal-monolayer-metal type sandwich devices are shown to exhibit low leakage currents and high geometrical capacitance comparable to previously demonstrated self-assembled monolayer (SAM) type dielectrics but with a higher surface energy. The improved surface energy characteristics enable processing of a wider range of organic semiconductors from solution. Transistors based on a number of solution-processed organic semiconductors with operating voltages below 2 V are also demonstrated.
Read full abstract