The gastrointestinal tract of animals contains microbiota, forming a complex microecosystem. Gut microbes and their metabolites can regulate the development of host innate and adaptive immune systems. Animal immune systems maintain intestinal symbiotic microbiota homeostasis. However, relatively few studies have been published on reptiles, particularly snakes, and even fewer studies on different parts of the digestive tracts of these animals. Herein, we used 16S rRNA gene sequencing to investigate the microbial community composition and adaptability in the stomach and small and large intestines of Lycodon rufozonatus. Proteobacteria, Bacteroidetes, and Firmicutes were most abundant in the stomach; Fusobacteria in the small intestine; and Proteobacteria, Bacteroidetes, Fusobacteria, and Firmicutes in the large intestine. No dominant genus could be identified in the stomach; however, dominant genera were evident in the small and large intestines. The microbial diversity index was significantly higher in the stomach than in the small and large intestines. Moreover, the influence of the microbial community structure on function was clarified through function prediction. Collectively, the gut microbes in the different segments of the digestive tract revealed the unique features of the L. rufozonatus gut microbiome. Our results provide insights into the co-evolutionary relationship between reptile gut microbiota and their hosts.
Read full abstract