Background: The forward lunge is a closed-chain weight-bearing multi-joint exercise simulating the activities of daily living, such as walking or stair climbing, which mainly activates hip, knee, and ankle musculature and is also used by athletes and other individuals to train lower-extremity musculature. Objectives: The purpose of this study is to compare lower-extremity muscle recruitment patterns between stride and step length variations in forward lunges. Methods: Twenty participants had a mean (±SD) age, mass, and height of 26 ± 6 y, 79 ± 8 kg, and 176 ± 7 cm, respectively, for males, and 27 ± 4 y, 62 ± 6 kg, and 161 ± 7 cm, respectively, for females. All participants used their 12-repetition maximum weight while performing a short step and long step forward lunge with a stride (striding forward and pushing back to the starting position) and without a stride (lunging up and down with feet stationary). During each lunge variation, surface electromyography (EMG) data were collected from the quadriceps, hamstrings, gastrocnemius, hip adductors, gluteus maximus, and gluteus medius muscles, and then normalized as a percent of each muscle’s maximum voluntary isometric contraction. A repeated measures two-way analysis of variance was employed (p < 0.01), with step length and stride comprising the two factors. Results: The following had no significant interactions: (1) quadriceps, hamstrings, gastrocnemius, hip adductor, and gluteus maximus EMG activities were significantly greater in lunges with a long step compared to lunges with a short step; and (2) gluteus maximus and gluteus medius EMG activities were significantly greater in lunges with a stride compared to lunges without a stride. The following had significant interactions: (1) gluteus medius EMG activities were significantly greater in lunges with a long step with and without a stride compared to lunges with a short step with and without a stride; (2) quadriceps EMG activities were generally significantly greater in lunges with long and short steps with a stride compared to lunges with long and short steps without a stride, in lunges with a long step with a stride compared to lunges with a short step with a stride, and in lunges with a short step without a stride compared to lunges with a long step without a stride; (3) hamstring and hip adductor EMG activities were significantly greater in lunges with a long step with a stride compared to lunges with a long step without a stride, and in lunges with a long step with and without a stride compared to lunges with a short step with and without a stride; and (4) gastrocnemius EMG activities were significantly greater in lunges with a long step with and without a stride compared to lunges with a short step with and without a stride. Conclusions: Lower-extremity muscle activity is generally greater in forward lunges with a long step compared to a short step, and greater in lunges with a stride compared to without a stride. During the externally loaded forward lunge, high to very high muscle activity occurs in the quadriceps, gluteus maximus, and gluteus medius, thus enhancing muscle hypertrophy and strength in these muscles, while moderate muscle activity occurs in the hamstrings, gastrocnemius, and adductor longus.
Read full abstract