Biomass gasification coupled with solid oxide fuel cell (SOFC) technology utilizes the gas generated from biomass gasification directly as fuel for SOFC, thereby realizing power generation from solid waste. This technology combines the carbon–neutral feature of biomass with the high efficiency and low emissions of SOFC, making it a promising route for clean energy generation. However, biomass gasification syngas possesses a complex composition, including a high concentration of inert gases, which imposes higher requirements on SOFC. This study developed a multi-channel, hierarchical structural design based on the commercial NiO-yttria-stabilized zirconia (YSZ) material system, realizing high-performance power generation using biomass gasification syngas. The results showed that the combination of a unique structural design and an enhanced interface electrochemical reaction effectively mitigates the influence from inert composition dilution. When operating in gasification syngas with nearly 60 % inert components, the power density can reach 2.07 W·cm−2 (750 °C). In addition, due to the spatial separation of the inert support region and the electrochemically active region, the effect of controlling the position of carbon deposits was achieved, demonstrating 100 h stable operation with dry biomass gasification syngas. Hence, the combination of micro-tubular SOFC with distinctive structural regulation and biomass gasification exhibits promising prospects for further development.
Read full abstract