Astringency in persimmon fruit is often eliminated by treatment with gaseous carbon dioxide, dry ice, or alcohol. However, these methods are time-consuming and labor-intensive, and astringency may recur after heat treatment. In this study, a method for easily reducing astringency was investigated by taking advantage of the benefits of combining proteins and polysaccharides. In the first experiment, the protein materials with strong astringency-reducing effects were screened from among 15 protein-rich foods using astringent persimmon juice (APJ), and collagen peptides were found to be highly effective. However, syneresis was observed when 1% collagen peptide powder was added to the astringent persimmon paste (AP). Therefore, in the second experiment, 0.5% collagen peptides (protein) were applied to reduce heating-induced astringency and reversion and 0.5% polysaccharides (guar, and xanthan gums) to maintain color and suppress syneresis. The results demonstrate that the combination of collagen peptide and polysaccharides is optimal for removing astringency in persimmon, inhibiting its recurrence by heating, and maintaining product quality. The results of this study may reduce the labor required for the astringency removal process, broaden the uses of AP, and facilitate the effective utilization of discarded astringent persimmons that do not meet the standards.
Read full abstract