Mercury-bearing material has been placed in municipal landfills from a wide array of sources including fluorescent lights, batteries, electrical switches, thermometers, and general waste. Despite its known volatility, persistence, and toxicity in the environment, the fate of mercury in landfills has not been widely studied. The nature of landfills designed to reduce waste through generation of methane by anaerobic bacteria suggests the possibility that these systems might also serve as bioreactors for the production of methylated mercury compounds. The toxicity of such species mandates the need to determine if they are emitted in municipal landfill gas (LFG). In a previous study, we had measured levels of total gaseous mercury (TGM) in LFG in the μg/m 3 range in two Florida landfills, and elevated levels of monomethyl mercury (MMM) were identified in LFG condensate, suggesting the possible existence of gaseous organic Hg compounds in LFG. In the current study, we measured TGM, Hg 0, and methylated mercury compounds directly in LFG from another Florida landfill. Again, TGM was in the μg/m 3 range, MMM was found in condensate, and this time we positively identified dimethyl mercury (DMM) in the LGF in the ng/m 3 range. These results identify landfills as a possible anthropogenic source of DMM emissions to air, and may help explain the reports of MMM in continental rainfall.
Read full abstract