The solid-to-gas phase transition of potassium during biomass combustion significantly impacts ash-related issues in bioenergy systems, affecting operational efficiency and equipment longevity. However, the specific mechanisms and kinetics of this transition process remain inadequately understood. This work investigates the time-resolved transition of solid-phase potassium to the gas phase during the combustion of rice husk and wheat straw pellets, combining experimental measurements with theoretical modeling. Tunable diode laser absorption spectroscopy (TDLAS) was employed to measure atomic potassium concentrations 15 mm above burning pellets tray, where gas-phase equilibrium is approached. Key combustion characteristics including thermogravimetric profiles, spectral radiation, and temperature were simultaneously monitored. A novel multi-step model was developed to describe the transition of different forms of solid-phase potassium (organic, exchangeable, and inorganic) to the gas phase. This model integrates TDLAS measurements, observed combustion characteristics, and biomass physicochemical properties. Thermodynamic equilibrium calculations were used to estimate the atomic potassium fraction from total gaseous potassium. The results showed that the solid-to-gas phase transition of organic potassium synchronizes with volatiles release. In contrast, the maximum emission rates of inorganic and exchangeable potassium occurred at the onset of char combustion. The developed model agrees well with the online detection experiments and were further validated by offline ICP analysis of residual ash. While not directly simulating gas-solid interface reactions near the particle surface, this work lays groundwork for future multi-scale modeling of particle-laden flows and reactor-scale phenomena in biomass combustion systems.
Read full abstract