Efficient dispersion of MgCl2 solution is crucial in saline lake industries. Understanding how structural variables influence atomization can improve nozzle design. This study uses Computational Fluid Dynamics (CFD) modeling to examine the effects of key structural parameters on MgCl2 solution mixing in atomization nozzles. It focuses on the impact of liquid injection hole size, number of air injection holes, and mixing chamber length on the nozzle's fluid dynamics. The analysis covers variations in internal velocity and MgCl2 volume fraction. Simulations show that increasing the liquid injection hole diameter reduces liquid flow resistance, while adding more air injection holes leads to a more uniform air distribution, though with a slight increase in atomization efficiency. A longer mixing chamber reduces gas phase velocity. Optimal mixing efficiency is achieved with 4 air injection holes, a 1.5 mm liquid injection hole, a 7 mm mixing chamber, a 2 mm nozzle outlet, 0.3 MPa inlet gas pressure, and an 80 L/h solution flow rate. This study provides insights into key parameters for improving performance and refining industrial applications.
Read full abstract