Direct Energy Deposition (DED) is an additive manufacturing process used to fabricate thin/thick-walled structures and high-value component restorations. As blown powder-based DED gains prominence, catchment efficiency becomes imperative for enhancing material utilization and process effectiveness. This study focuses on predicting catchment efficiency within a DED process by investigating four significant process parameters: laser power, powder feed rate, carrier gas flow rate, and deposition speed. The primary objective is to devise a dimensionless number capable of predicting catchment efficiency based on a combination of these parameters, categorizing efficiency into low, medium, and high regions. This approach reduces the need for resource-intensive experimentation. The experimental validation of the proposed dimensionless number was conducted, showing an error rate of around 8%. Additionally, six machine learning classifier algorithms – Support Vector Machines, K-Nearest Neighbours, Decision Tree, Random Forest, Linear Regression, and Gaussian Naive Bayes – were employed to categorize catchment efficiency zones. Support Vector Machine demonstrated the best performance with a predictive accuracy of 0.98. This study provides a methodology for catchment efficiency prediction, enhancing decision-making and resource optimization, and can be used to optimize process parameters for thin-wall or relatively thin-wall fabrication.