A concept for high-rate plasma deposition (PECVD) of hydrogenated microcrystalline silicon on moving substrates (dynamic deposition) is developed and evaluated. The chamber allows for substrates up to a size of 40 × 40 cm2. The deposition plasma is sustained between linear VHF electrodes (60 MHz) and a moving substrate. Due to the gas flow geometry and the high degree of source gas depletion, from the carrier's point of view the silane concentration varies when passing the electrodes. This is known to lead to different growth conditions which can induce transitions from microcrystalline to amorphous growth. The effect of different silane concentrations is simulated at a standard RF showerhead electrode by intentionally varying the silane concentration during deposition in static mode. This variation may decrease the layer quality of microcrystalline silicon, due to a shift of the crystallinity away from the optimum. However, adapting the input silane concentration, state-of-the-art solar cells are obtained. Microcrystalline cells (ZnO : Al/Ag back contacts) produced by the linear VHF plasma sources show an efficiency of 7.9% and 6.6% for depositions in static and dynamic mode, respectively.
Read full abstract