Abstract

The effect of the incoming flow geometry on the hydrodynamic drag of a body is investigated in a numerical experiment simulating a free gas flow past a sphere as well as flows in cylindrical tubes of various radii, in a confuser, and a diffuser. The results of calculations lead to the conclusion that the confinement of the flow by the tube walls, its contraction and expansion may change the hydrodynamic force and the drag acting on the body insignificantly (not more than by 30%). This cannot explain the early drag crisis, in which the values of these quantities decrease by 4–7 times for Reynolds numbers on the order of 100. This phenomenon is explained theoretically by the effect of strong turbulence of the incoming flow to the body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.