The rapid evolution of Li-ion battery technologies and manufacturing processes demands a continual update of environmental impact data. The general objective of this paper is to publish up-to-date primary data on battery manufacturing, which is of great importance to the scientific community and decision-makers. The environmental impacts have been calculated and estimated based on publicly available data disclosed under Hungarian government regulations and official decrees. The gate-to-gate energy use, greenhouse gas (GHG) emissions, water consumption, and N-methyl-2-pyrrolidone (NMP) consumption are estimated for three battery factories in Hungary, with a total annual capacity of approximately 100 GWh. The factories use around 30–35 kWh energy per kWh of battery capacity and the associated GHG emissions are around 10 kgCO2eq per kWh of cell production. The water consumption varies considerably among factories, with one plant using 28 L per kWh and the other two using 56 and 67 L per kWh. The specific consumption of NMP was calculated for two factories, resulting in close values of 0.51–0.56 kg per kWh of cell production. As a new approach, we distinguish between global and local GHG emissions related to battery production. The main component of the latter is carbon dioxide from the combustion of natural gas, but the local transport related to the battery factories is also a source of emissions. Our estimations include not only the consumptions required directly for the manufacturing technology, but also those for social purposes (e.g., heating offices), giving a more complete picture of the factory’s environmental impact. We believe that up-to-date primary data are crucial for ensuring transparency and holds significant value for both the scientific community and decision-makers.
Read full abstract