We investigated the hypothesis that several transcriptional repressors are necessary to set the boundaries of anterior pair-rule stripes in Drosophila. Specifically, we tested whether Tailless (Tll) is part of a repression mechanism that correctly sets the anterior boundaries of hairy 1 (h 1) and even-skipped 1 (eve 1) stripes. Single mutant tll embryos displayed subtle deviations from the normal positions of h 1 and eve 1 stripes. Moreover, we observed stronger stripe deviations in embryos lacking both Tll and Sloppy-paired 1 (Slp 1), a common repressor for anterior pair-rule stripes. Using h 1 and eve 1 reporter constructs in the genetic assays, we provided further evidence that interference with normal mechanisms of stripe expression is mediated by Tll repression. Indeed, Tll represses both h 1 and eve 1 reporter stripes when misexpressed. Investigating the expression of other anterior gap genes in different genetic backgrounds and in the misexpression assays strengthened Tll direct repression in the regulation of h 1 and eve 1. Our results are consistent with tll being a newly-identified component of a combinatorial network of repressor genes that control pair-rule stripe formation in the anterior blastoderm of Drosophila.
Read full abstract