With the low permeability and high swelling property, Gaomiaozi (GMZ) bentonite is regarded as the favorable candidate backfilling material for a potential repository. The diffusion behaviors of HTO in GMZ bentonite were studied to obtain effective diffusion coefficient (D e) and accessible porosity (e) by through- and out-diffusion experiments. A computer code named Fitting for diffusion coefficient (FDP) was used for the experimental data processing and theoretical modeling. The D e and e values were (5.2–11.2) × 10−11 m2/s and 0.35–0.50 at dry density from 1,800 to 2,000 kg/m3, respectively. The D e values at 1,800 kg/m3 was a little higher than that of at 2,000 kg/m3, whereas the D e value at 1,600 kg/m3 was significantly higher (approximately twice) than that of at 1,800 and 2,000 kg/m3. It may be explained that the diffusion of HTO mainly occurred in the interlayer space for the highly compacted clay (dry density exceeding 1,300 kg/m3). 1,800 and 2,000 kg/m3 probably had similar interlayer space, whereas 1,600 kg/m3 had more. Both D e and e values decreased with increasing dry density. For compacted bentonite, the relationship of D e and e could be described by Archie’s law with exponent n = 4.5 ± 1.0.
Read full abstract