To review the clinical, biochemical and genetic aspects of brain creatine deficiency syndromes, as well as the therapeutic options available. Brain creatine deficiency syndrome has recently been described as a series of inborn errors of metabolism that affect the synthesis and transport of creatine. Three metabolic defects are known: two affect synthesis -guanidinoacetate methyltransferase (GAMT) and arginine:glycine amidinotransferase (AGAT)- and one affects the transport of creatine. Clinically, these patients can display mental retardation, language disorders, epilepsy, autistic behaviour, neurological impairment and movement disorders. After the clinical selection, the different defects can be identified by a biochemical study involving the analysis of metabolites in biological fluids (guanidinoacetate and creatine/ creatinine ratio). Before continuing with the molecular studies, it is important to confirm the deficiency of brain creatine by means of magnetic resonance imaging with spectroscopy. Diagnostic confirmation of AGAT and GAMT deficits is carried out by determining the enzymatic activity in fibroblasts or lymphoblasts, or the incorporation of creatine in the case of studies of transport defects. The study of mutations in AGAT, GAMT (autosomal recessive inheritance) and SLC6A8 (X-linked) genes completes the diagnosis. Brain creatine deficiency syndromes are mainly associated to mental retardation and autism. GAMT and AGAT deficiencies respond to treatment with creatine, whereas patients with transport defects do not respond to this therapy; new therapeutic approaches are therefore being evaluated for this disease.
Read full abstract