High-energy gamma-ray radiography has exceptional penetration ability and has become an indispensable nondestructive testing (NDT) tool in various fields. For high-energy photons, point projection radiography is almost the only feasible imaging method, and its spatial resolution is primarily constrained by the size of the gamma-ray source. In conventional industrial applications, gamma-ray sources are commonly based on electron beams driven by accelerators, utilizing the process of bremsstrahlung radiation. The size of the gamma-ray source is dependent on the dimensional characteristics of the electron beam. Extensive research has been conducted on various advanced accelerator technologies that have the potential to greatly improve spatial resolution in NDT. In our investigation of laser-driven gamma-ray sources, a spatial resolution of about 90 µm is achieved when the areal density of the penetrated object is 120 g/cm2. A virtual source approach is proposed to optimize the size of the gamma-ray source used for imaging, with the aim of maximizing spatial resolution. In this virtual source approach, the gamma ray can be considered as being emitted from a virtual source within the convertor, where the equivalent gamma-ray source size in imaging is much smaller than the actual emission area. On the basis of Monte Carlo simulations, we derive a set of evaluation formulas for virtual source scale and gamma-ray emission angle. Under optimal conditions, the virtual source size can be as small as 15 µm, which can significantly improve the spatial resolution of high-penetration imaging to less than 50 µm.
Read full abstract