This paper investigates the effects of distributed time delays on the dynamics of the pituitary–adrenal axis. Our two-dimensional model incorporates distributed time delays with general delay kernels, specifically illustrating interactions between adrenocorticotropic hormone (ACTH) and cortisol (CORT). We derive general theoretical results for general delay kernels, exemplified by Dirac and weak Gamma kernels, revealing stability transitions characterized by Hopf bifurcations. We establish conditions for the local asymptotic stability of the unique equilibrium and discuss the existence of periodic solutions. Numerical simulations demonstrate that periodic oscillations appear for appropriate values of the average time delays. Including an external input results in both ultradian and circadian rhythms, highlighting the system’s dynamic responsiveness to external stimuli.
Read full abstract