Recreational hunting has been the dominant game management and conservation mechanism in the United States for the past century. However, there are numerous modern-day issues that reduce the viability and efficacy of hunting-based management, such as fewer hunters, overabundant wildlife populations, limited access, and emerging infectious diseases in wildlife. Quantifying the drivers of recreational harvest by hunters could inform potential management actions to address these issues, but this is seldom comprehensively accomplished because data collection practices limit some analytical applications (e.g., differing spatial scales of harvest regulations and harvest data). Additionally, managing large-scale issues, such as infectious diseases, requires collaborations across management agencies, which is challenging or impossible if data are not standardized. Here we discuss modern issues with the prevailing wildlife management framework in the United States from an analytical point of view with a case study of white-tailed deer (Odocoileus virginianus) in the Midwest. We have four aims: (1) describe the interrelated processes that comprise hunting and suggest improvements to current data collections systems, (2) summarize data collection systems employed by state wildlife management agencies in the Midwestern United States and discuss potential for large-scale data standardization, (3) assess how aims 1 and 2 influence managing infectious diseases in hunted wildlife, and (4) suggest actionable steps to help guide data collection standards and management practices. To achieve these goals, Wisconsin Department of Natural Resources disseminated a questionnaire to state wildlife agencies (Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, Ohio, Wisconsin), and we report and compare their harvest management structures, data collection practices, and responses to chronic wasting disease. We hope our “call to action” encourages re-evaluation, coordination, and improvement of harvest and management data collection practices with the goal of improving the analytical potential of these data. A deeper understanding of the strengths and deficiencies of our current management systems in relation to harvest and management data collection methods could benefit the future development of comprehensive and collaborative management and research initiatives (e.g., adaptive management) for wildlife and their diseases.