The influence of video games on the human brain has been a topic of extensive research and discussion. Video games, characterized by their dynamic and immersive qualities, have demonstrated the capacity to impact diverse cognitive processes. In this study, we conducted a detailed analysis of brain response variations to different genres of computer games, specifically focusing on boring, calm, horror, and funny games. To achieve this, we computed the sample entropy and approximate entropy of electroencephalograms (EEG) signals recorded from participants while they engaged with each type of game. Our findings revealed that EEG signals exhibited the highest complexity during the funny game and the lowest complexity during the calm game. This suggests that the brain is most active when playing the funny game and least active during the calm game. These results provide valuable insights into how different types of video game content can influence brain activity. The methodology employed in this study can be extended to explore brain activity under various conditions, potentially offering a broader understanding of how different stimuli impact cognitive processes. This approach can be useful in examining the effects of various interactive media on brain function and could inform the design of video games and other digital experiences to optimize cognitive engagement and mental well-being.