Currently, galvanized steel is treated with hexavalent chrome passivation. Sol–gel coating has been found to be a potential replacement for the hazardous hexavalent chrome passivation treatment. The aim of this work is to study the effect of zirconyl nitrate on corrosion behavior of sol–gel coating. Aminopropyl-trimethoxysilane and 3-glycidoxypropyltrimethoxysilane were employed as precursors to prepare the sol–gel-based silane coating. The sol–gel film was deposited on galvanized steel sheet by dip coating method. The chemical properties of sol–gel solution and coated films were analyzed by infrared spectroscopy. Morphology of the film was characterized by scanning electron microscope. The corrosion resistance of the coated samples was evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization curve, and salt spray test. The results indicated that zirconia-doped coatings have better corrosion resistance in comparison with their undoped counterparts. The coating doped with 0.5% zirconyl nitrate provides better corrosion protection due to the inhibitive action of zirconia ion.