Background: Gait recognition is perceived as the most promising biometric approach for future decades especially because of its efficient applicability in surveillance systems. Due to recent growth in the use of gait biometrics across surveillance systems, the ability to rapidly search for the required data has become an emerging need. Therefore, we addressed the gait retrieval problem, which retrieves people with gaits similar to a query subject from a large-scale dataset. Methods: This paper presents the deep gait retrieval hashing (DGRH) model to address the gait retrieval problem for large-scale datasets. Our proposed method is based on a supervised hashing method with a deep convolutional network. We use the ability of the convolutional neural network (CNN) to capture the semantic gait features for feature representation and learn the compact hash codes with the compatible hash function. Therefore, our DGRH model combines gait feature learning with binary hash codes. In addition, the learning loss is designed with a classification loss function that learns to preserve similarity and a quantization loss function that controls the quality of the hash codes Results: The proposed method was evaluated against the CASIA-B, OUISIR-LP, and OUISIR-MVLP benchmark datasets and received the promising result for gait retrieval tasks. Conclusions: The end-to-end deep supervised hashing model is able to learn discriminative gait features and is efficient in terms of the storage memory and speed for gait retrieval.