Biochemical examination of the Rev-dependent expression of gag mRNAs produced from gag-Rev-responsive element (RRE) expression plasmids showed a large discrepancy between the level of cytoplasmic gag mRNA and the produced Gag protein. Significant levels of the mRNA produced in the absence of Rev were localized in the cytoplasm, while very low levels of Gag protein were produced. In the presence of Rev, the levels of mRNA increased by 4- to 16-fold, while the Gag protein production increased by 800-fold. These findings indicated that in addition to promoting nucleus-to-cytoplasm transport, Rev increased the utilization of cytoplasmic viral mRNA. Poly(A) selection and in vitro translation of cytoplasmic gag mRNA verified that the mRNA produced in the absence of Rev was functional. To analyze the translational defect in the absence of Rev, we examined the association of the cytoplasmic gag mRNA with ribosomes. gag mRNA produced in the absence of Rev was excluded from polysomes, while gag mRNA produced in the presence of Rev was associated with polysomes and produced Gag protein. These observations showed that the presence of Rev was required for efficient loading of gag mRNA onto polysomes. This effect required the presence of the RRE on the mRNA. Analysis of mRNAs produced from a rev-minus proviral clone confirmed that the presence of Rev promoted polysomal loading of both gag/pol and vpu/env mRNAs. The localization of gag mRNA was also examined by in situ hybridization. This analysis showed that in the presence of Rev, most of the gag mRNA was found in the cytoplasm, while in the absence of Rev, most of the gag mRNA was found in the nucleus and in the region surrounding the nucleus. These results suggest that a substantial fraction of the gag mRNA is retained in distinct cytoplasmic compartments in the absence and presence of Rev. These findings indicate that the presence of Rev is required along the entire mRNA transport and utilization pathway for the stabilization, correct localization, and efficient translation of RRE-containing mRNAs.
Read full abstract