Gamma-aminobutyric acid (GABA) plays a crucial role as a neurotransmitter in anxiety circuits, prominently in the hippocampus, amygdala, and prefrontal cortex. The synthesis of GABA in the central nervous system is primarily governed by glutamic acid decarboxylase 67 (GAD67). Aging is associated with emotional alterations, and isolation stress has been linked to increased anxiety. This study aimed to investigate the impact of aging on the gene expression of GAD67 (Gad1) in the medial prefrontal cortex (m PC) and ventral hippocampus (v Hip) of fear-potentiated rats subjected to isolation stress. To conduct the study, Wistar rats of different age groups 21-day-old (immature), 42-day-old (peri-adolescent), and 365-day-old (mature adult) were utilized. Each age level was categorized into four groups: 1) Control group - no pre-stressor, no maze, no drug, 2) Innate fear group (M) - no pre-stressor, maze, no drug, 3) Fear-potentiated group (IM) - isolation pre-stressor for 120 min, maze, no drug, and 4) Diazepam-treated group (IMD) - isolation pre-stressor for 120 min, maze, and diazepam administration. Following the tests, the (m PC) and (v Hip) regions were dissected, and Gad1 gene expression changes were assessed using Real-time PCR technique. The results revealed that, across all age groups, Gad1 expression in both the (m PC) and (v Hip) was significantly higher in the fear-potentiated groups (IM) compared to the control and innate fear (M) groups. Notably, in aged 365-day-old rats from the innate fear group (M), the expression of Gad1 in (v Hip) was also higher than that in the control group. Additionally, aged fear-potentiated rats exhibited elevated Gad1 gene expression in both structures compared to other age groups. These findings suggest that isolation stress before exposure to the elevated plus maze (EPM) can elevate Gad1 gene expression in both the (v Hip) and (m PC), and age may play a role in modulating its expression.
Read full abstract