This study was designed to predict the Q-markers of Citri Reticulatae Pericarpium volatile oil and conduct quantitative analysis by GC-MS. The common components of Citri Reticulatae Pericarpium volatile oil were detected by GC-MS. The network pharmacology approaches were utilized for constructing the component-target network and protein-protein interaction(PPI) network, followed by the GO and KEGG pathway enrichment analysis to clarify the pharmacological effects of common components. Molecular docking was conducted to observe the biological activities of common components, thus identifying the Q-markers of Citri Reticulatae Pericarpium volatile oil. The obtained Q-markers were subjected to quantitative analysis by GC-MS. The GC-MS analysis of 19 batches of Citri Reticulatae Pericarpium volatile oil revealed three common components, namely, D-limonene, γ-terpinene, and myrcene. The common components were analyzed based on network pharmacology, and the results showed that Citri Reticulatae Pericarpium volatile oil mainly acted on the core targets GABRA1, GABRA6, GABRA5, GABRA3, and GABRA2 through D-limonene and γ-terpinene, with five important pathways such as nicotine addiction and GABAergic synapse involved. The core targets were mainly distributed in olfactory region, cerebral cortex, cerebellum, basal ganglia, hippocampus, and amygdala to exert the pharmacological effects. As revealed by molecular docking, D-limonene and γ-terpinene exhibited good biological activities, so they were identified as the Q-markers of Citri Reticulatae Pericarpium volatile oil. The results of quantitative analysis showed that the volume fraction of D-limonene was within the range of 0.77-1.03 μL·mL~(-1), and that of γ-terpinene within the range of 0.04-0.13 μL·mL~(-1). The prediction of D-limonene and γ-terpinene as the Q-markers of Citri Reticulatae Pericarpium volatile oil has laid an experimental foundation for the establishment of the quality evaluation standard for Citri Reticulatae Pericarpium volatile oil.