Hyperactivity of spinal dorsal horn neurons plays an important role in the development of diabetic neuropathic pain. However, little is known as to whether synaptic input to spinal dorsal horn neurons is altered in diabetic neuropathy. Also, the function of GABAB receptors in the control of synaptic input to dorsal horn neurons in diabetes remains poorly understood. To determine the changes in synaptic input to dorsal horn neurons and the GABAB)receptor function in streptozotocin-induced diabetes, we performed whole-cell recording (GDP-beta-S included in the internal solution) on lamina II neurons in rat spinal cord slices. The frequency of glutamatergic mEPSCs and the amplitude of monosynaptic EPSCs evoked from the dorsal root were significantly higher in diabetic than in control rats. On the other hand, the basal frequency and amplitude of GABAergic spontaneous IPSCs and mIPSCs and those of glycinergic spontaneous IPSCs and mIPSCs did not differ significantly between control and diabetic rats. The GABAB agonist baclofen produced a significantly greater reduction in dorsal root-evoked EPSCs and the frequency of mEPSCs in control than in diabetic rats. However, the inhibitory effect of baclofen on GABAergic and glycinergic spontaneous IPSCs and mIPSCs was not significantly different in the two groups. These findings suggest that increased glutamatergic input from primary afferents to dorsal horn neurons may contribute to synaptic plasticity and central sensitization in diabetic neuropathic pain. Furthermore, the function of presynaptic GABAB receptors at primary afferent terminals, but not that on GABAergic and glycinergic interneurons, in the spinal cord is reduced in diabetic neuropathy.
Read full abstract