GABA, the major inhibitory neurotransmitter in the mammalian brain, binds to GABA A receptors, which form chloride ion channels. The predicted structure of the GABA A receptor places a consensus phosphorylation site for cAMP-dependent protein kinase (PKA) on an intracellular domain of the channel. Phosphorylation by various protein kinases has been shown to alter the activity of certain ligand- and voltage-gated ion channels. We have examined the role of phosphorylation by the catalytic subunit of PKA in the regulation of GABA A receptor channel function using whole-cell and excised outside-out patch-clamp techniques. Inclusion of the catalytic subunit of PKA in the recording pipettes significantly reduced GABA-evoked whole-cell and single-channel chloride currents. Both heat inactivation of PKA and addition of the specific protein kinase inhibitor peptide prevented the reduction of GABA-evoked currents by PKA. Neither mean channel open time nor channel conductance was affected by PKA. The reduction in GABA receptor current by PKA was primarily due to a reduction in channel opening frequency.
Read full abstract