The use of rapid thermal annealing (RTA) techniques to anneal ion implanted GaAs compounds is expected to have a significant impact on device technology. Due to the short duration of the heat treatment, the implanted impurities may be activated without significant diffusion. For heterojunction bipolar transistor (HBT) applications, high doses of p-type impurities are required to compensate the doping levels of N-GaAlAs emitter and n+ GaAs contact layers. Multi-implantations were chosen to maintain a flat profile down to the base layer. Energies of 30, 60, 150, and 340 keV with doses of 6 × 1013, 9 × 1013,6 × 1014, and 9 × 1014 cm−2, respectively, have been used. Annealing cycles with time durations of a few seconds and temperature in the range of 850–950°C are described. Electrical properties of the annealed samples have been investigated using an electrochemical measurement technique. It was found that hole concentrations as high as 4 × 1019 cm−3 and electrical activities near to 75 percent can be obtained. There is no evident indiffusion and no significant outdiffusion at the optimal annealing conditions. Simulation of multilayer implantations are also carried out by an accurate model available in TITAN 2D process simulator using Pearson IV laws and taking into account the diffusion effects on profile distribution caused by RTA. A first approximation using a simple model allows a rapid evaluation of the data fitting operation. In a second approach, concentration dependent diffusivity and the contribution of the electric field at the interface are covered to perform an improved data fitting of ion implanted and annealed dopant profiles. A comparative study shows a good agreement between experimental and simulated distributions.