ObjectiveThis study aimed to investigate the regulatory effects of long non-coding RNA-ANRIL on CDKN2A in the cell cycle of Kasumi-1 cells and elucidate the underlying molecular mechanisms.MethodsANRIL and CDKN2A expression levels were quantified using RT-qPCR in peripheral blood samples from acute myeloid leukemia (AML) patients. CDKN2A knockdown efficiency was validated via RT-qPCR, and cell cycle distribution was analyzed using flow cytometry. Cell proliferation assays were conducted with CCK-8 following palbociclib treatment and CDKN2A downregulation. RNA immunoprecipitation (RIP) identified potential ANRIL-associated targets, while western blotting assessed the expression levels of GSK3β/β-catenin/cyclin D1 signaling components and related proteins.ResultsANRIL and CDKN2A were markedly overexpressed in AML patient samples. Knockdown of ANRIL and CDKN2A led to G1 phase arrest accompanied by reduced CDK2/4/6 and cyclin D1 protein levels, while ANRIL upregulation induced the opposite effect. Palbociclib treatment for 24 h and 48 h elevated the G1 phase cell population and suppressed CDK2/4/6 and cyclin D1 protein expression, demonstrating its ability to counteract ANRIL-driven cell cycle progression. Downregulation of ANRIL and CDKN2A also suppressed the GSK3β/β-catenin signaling pathway, reducing cyclin D1 expression, whereas ANRIL upregulation reactivated this axis. Co-transfection experiments showed that simultaneous cyclin D1 suppression and ANRIL overexpression attenuated ANRIL’s stimulatory effects on cell cycle progression. RIP analysis confirmed a physical interaction between ANRIL and CDKN2A. Furthermore, CDKN2A downregulation inhibited cell proliferation and reversed GSK3β/β-catenin/cyclin D1 pathway activation mediated by ANRIL upregulation.ConclusionANRIL facilitates Kasumi-1 cell survival by modulating CDKN2A to activate the GSK3β/β-catenin/cyclin D1 signaling pathway.
Read full abstract