Against the backdrop of China's "double carbon" objective, the exploration of low-carbon land consolidation has become a prominent area of focus for enhancing the development of ecological civilization. In this study, three typical projects at different time points (2016, 2019, and 2022) in Wudi County were selected to measure the carbon effect of land consolidation from four perspectives: artificial and industrial materials, mechanical shift consumption, land use structure, and farmland ecosystem. Based on the calculation of carbon effect of land consolidation by using carbon emission coefficient method, the changes of land use structure and carbon storage of farmland ecosystem before and after land consolidation were corrected by using GIS tools and net ecosystem productivity (NEP) model based on remote sensing technology, and the carbon emission intensity of each land consolidation project was finally obtained. The study summarized the influencing factors of carbon emissions through the above analysis and uses the fuzzy interpretation structure (FISM) model to provide the hierarchy of influencing factors of carbon emissions, thus proposing a low-carbon promotion path for land consolidation. The findings of this study can serve as a useful reference for low-carbon land consolidation efforts. The results showed that (1) the first, second, and third projects emitted 6140.06 t, 1243.78 t, and 17,604.62 t of carbon, respectively. Among them, the largest contributors to these emissions were labor and industrial materials, followed by mechanical shift; land use structure and farmland ecosystem were the main sources of carbon sinks and have a positive impact on the carbon cycle. (2) The carbon emission intensity of project one, project two, and project three after standardization is 0.26, 0.49, and 0.25, respectively, which are all at a high level. (3) According to the FISM model categorized 15 low-carbon upgrading paths, it was recommended that the government take a leading role in Wudi County by developing a scientific and rational construction plan. Additionally, efforts were made to actively protect farmland and forest land from destruction, reduce energy and material consumption, increase carbon storage in the farmland ecosystem, and promote low carbonization of land consolidation to the fullest extent possible.
Read full abstract