Motivated by several problems on constructions, algebraic properties, in particular the law of importation (LI) and the flexible ordering property (FOP), and applications in approximate reasoning, the present article defines a new class of fuzzy implications, called <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$(\theta,t)$</tex-math></inline-formula> -generated implications, by a pair of multiplicative and additive generators of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> -norms and the usual addition instead of the multiplication or division usually used in the literature. The relations to other generator generated implications are clarified, the intersections with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$(S,N)$</tex-math></inline-formula> -implications are discussed in detail and the intersections with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$R$</tex-math></inline-formula> -implications are proved to be conjugates of the Łukasiewicz implication. The <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> -norm solutions to the (LI) equation for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$(\theta,t)$</tex-math></inline-formula> -generated implications in several cases are characterized in terms of generated t-norms, and two special subclasses of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$(\theta,t)$</tex-math></inline-formula> -generated implications are characterized through (LI) and (FOP) on the other hand. A particularly interesting corollary shows that a binary operation on [0,1] enjoying (OP) satisfies (LI) with the Łukasiewicz <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> -norm if and only if it is the Łukasiewicz implication. These results will partially solve or enrich the related open problems pending for fuzzy implications. As applications of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$(\theta,t)$</tex-math></inline-formula> -generated implications, two fuzzy reasoning methods, called triple I method and parallel hierarchical triple I method, based on (LI) and (FOP) are proposed in order to set a logic foundation for Zadeh’s compositional rule of inference (CRI) and to remedy the dependency of Jayaram’s hierarchical CRI on the order of inputs, respectively.