A major step forward in educational technology is the application of Data Science additionally Artificial Intelligence (AI) into undergraduate English courses. Improving teaching approaches and student involvement in the context of English language acquisition is an important issue that this study seeks to address. Even though there have been great strides in educational technology, conventional English classes still have a hard time meeting the demands of their different student bodies and offering individualized lessons. This is a major problem that prevents English language training from being effective, according to the material that is already available. In this study, we provide an approach to this issue called English Smart Classroom Teaching with the Internet of Things (ESCT-IoT). Utilizing data science techniques, artificial intelligence (AI) algorithms, and Internet of Things (IoT) sensors, ESCT-IoT intends to provide a personalized learning environment that is both immersive and adaptable. The fuzzy hierarchical evaluation technique is used to determine the assessment's final result, which measures the smart classroom's instructional impact. To overcome the limitations of conventional education, ESCT-IoT gathers and analyses data in real time to give adaptive material, individualized feedback, and learning suggestions. There are noticeable benefits as compared to traditional methods of instruction when it comes to evaluation metrics like student engagement, learning outcomes, and teacher satisfaction. Furthermore, ESCT-IoT is excellent in encouraging active learning, improving language fluency, and boosting overall academic achievement, according to qualitative comments from both students and teachers.
Read full abstract