본 논문에서는 퍼지 추론 방법을 이용하여 비디오 데이터에서 샷(shot)의 경계를 검출하는 방법을 제안한다. 제안된 방법에서는 컷(cut), 페이드(fade), 디졸브(dissolve)와 같은 샷의 경계들을 검출하고, 이들을 그 종류별로 분류하기 위해 기본적으로 퍼지 연상 기억장치를 확장한 퍼지 추론 방법을 이용한다. 본 논문에서는 연속적인 두 영상 사이의 차이를 나타내는 여러 특징들을 입력 퍼지 집합으로 사용하고, 샷 경계들을 출력 퍼지 집합으로 사용한다. 본 논문의 퍼지 추론 시스템은 크게 학습 단계와 추론 단계의 두 단계로 구성된다. 학습 단계에서는 퍼지 소속 함수의 결정을 통해 시스템의 기본 구조를 초기화하고 이를 바탕으로 퍼지 연상 기억장치의 학습 기능을 이용하여 퍼지 규칙을 조건부와 결론부를 연결하는 가중치의 형태로 생성한다. 그리고 추론 단계에서는 구성된 퍼지 추론 모델을 이용하여 실제 추론을 수행한다. 실험에서는 제안된 샷 경계 검출 방법의 성능을 확인하기 위해서 뉴스, 영화, 광고, 다큐멘터리, 뮤직 비디오 등의 비디오 데이터들을 활용하였다. In this paper, we describe a fuzzy inference approach for detecting and classifying shot transitions in video sequences. Our approach basically extends FAM (Fuzzy Associative Memory) to detect and classify shot transitions, including cuts, fades and dissolves. We consider a set of feature values that characterize differences between two consecutive frames as input fuzzy sets, and the types of shot transitions as output fuzzy sets. The inference system proposed in this paper is mainly composed of a learning phase and an inferring phase. In the learning phase, the system initializes its basic structure by determining fuzzy membership functions and constructs fuzzy rules. In the inferring phase, the system conducts actual inference using the constructed fuzzy rules. In order to verify the performance of the proposed shot transition detection method experiments have been carried out with a video database that includes news, movies, advertisements, documentaries and music videos.