With the ubiquitous proliferation of Internet of Thing (IoT) devices, Access Points (APs) of future Wi-Fi networks are expected to support more Stations (STAs) with increased traffic dynamics and diverse Quality-of-Service (QoS) requirements. While supporting STAs with guaranteed and non-guaranteed QoS requirements using hybrid dense access, the performance of Non-guaranteed STAs (NG-STAs) often suffers more due to the exacerbated random-access congestion and the increased random-access collision. To overcome these challenges, we propose a Joint Traffic and Access Management (JTAM) mechanism to reshape the access traffic of Guaranteed-STA (G-STAs) and arrange the access opportunities of NG-STAs. The reshaped traffic smooths the varying Resource Units (RUs) for random access, and the grouping strategy optimizes the access efficiency of NG-STAs. The analysis of unsaturated uplink OFDMA random access (UORA) back-off process theorizes the optimal grouping strategy under different saturated rates and channel error rates. Both analytical and simulation results show that JTAM improves the overall system throughput, the average NG-STA's throughput, and reduces the average NG-STA's access latency in the dense access scenario. JTAM shows robust performance when supporting high dynamic non-guaranteed traffic and maintains high fairness among NG-STAs groups.
Read full abstract