There is a striking similarity in the design of the US Space Transportation System, the European ARI-ANE 5P and the Japanese II-II: they all use a high energy cryogenic core stage along with two large solid propellant rocket boosters (SRB's) in order to provide for a high lift-off thrust level. Prior to last years disasters with Challenger and Titan it was widely held that SRB's were cheap, uncomplicated and safe. Even before the revelation by these accidents of severe safety hazards, shuttle operations demonstrated that the SRB's were by no means as cheap as reusable systems ought to be. In addition, they became known as sources of considerable environmental pollution. In contrast, hybrid rocket propulsion systems offer the following potential advantages: • • much higher savety level (TNT equivalent almost zero, shut-down capability in case of ignition failure of one unit, inert against unbonding) • • choice of non-toxic propellant combinations • • equal or higher specific performance For these reasons, system analysis were carried out to examine hybrids as potential alternative to SRB's. Various analytical tools (mass- and performance models, trajectory simulation etc.) were developed for parametrical studies of hybrid propulsion systems. Special attention was devoted to the well-known primary concern of hybrids: geometrical design of the solid fuel grain and regression rate of the ablating surface. Experimental data were used as input wherever possible. In 1985 first studies were carried out to find possible fields of application for hybrid rocket engines. A mass model and a performance model for hybrid rocket motors were developed, taking into account the peculiarities of hybrid combustion as there are i.e. low regression rate and shifting mixture ratio during operation. After some analytical work was done, hybrids proved to be a promising alternative to SRB's. Compared with solids, hybrids offer many advantages.
Read full abstract