IntroductionThis study focuses on the Ganqing section of the Yellow River Basin, exploring four land use scenarios: natural development, cropland protection, ecological protection, and rapid development. Given the ecological importance of this area, the research aims to evaluate how each scenario impacts habitat quality and land use sustainability by 2030.MethodsThe Future Land Use Simulation (FLUS) model and the Integrated Valuation of Environmental Services and Tradeoffs (InVEST) model were applied to simulate land use for each scenario. A habitat quality pattern and coupling coordination degree model was used to assess the interactions between land use and land cover change (LULCC) and habitat quality under different scenarios.ResultsFindings show that over 70% of the Ganqing section of the Yellow River Basin is primarily grassland. By 2030, the ecological protection scenario is predicted to have the highest habitat quality, followed by the natural development, rapid development, and cropland protection scenarios. Between 1990 and 2030, the area demonstrates predominantly high or moderate coordination between land use and habitat quality. Spatial analysis reveals lower coordination values in the southeast and higher values in the northwest, with imbalanced recession zones distributed around valley basins.DiscussionThis study highlights the value of strategic scenario planning in enhancing habitat quality and promoting sustainable land management in the Ganqing section of the Yellow River Basin. The ecological protection scenario shows the most promise for balancing development with habitat preservation, underscoring the importance of adopting land use policies that support ecological sustainability in vulnerable areas.
Read full abstract