We present the design and commissioning of a cryogenic low-vibration test facility that measures displacement noise from a gram-scale silicon cantilever at the level of 10-16m/Hz at 1kHz. This sensitivity is necessary for future tests of thermal noise models on cross sections of silicon suspension samples proposed for future gravitational-wave detectors. A volume of ∼36 l is enclosed by radiation shields cooling an optical test cavity that is suspended from a multi-stage pendulum chain providing isolation from acoustic and environmental noise. This 3kg test cavity housing a crystalline silicon cantilever is radiatively cooled to 123K in 41h and held at that temperature over many months with a relative temperature stability of ±1 mK. The facility housing the test cavity is sensitive to cavity length changes, which can resolve thermal fluctuations at the desired sensitivity. It is capable of interferometrically measuring temperature-dependent broadband displacement noise directly between 50Hz and 10kHz, where current and future ground-based gravitational wave observatories are the most sensitive. With a suitable cantilever design, the cryogenic facility we describe here will allow for the measurement of broadband thermal noise in crystalline silicon at 123K. This will guide the design of suspensions in planned future cryogenic ground-based gravitational-wave detectors such as LIGO Voyager and may have implications for suspensions in the Einstein Telescope. This facility is also suitable for the testing of new mirror coatings at cryogenic temperatures.
Read full abstract