Remote sensing and GIS approaches have provided valuable information on modeling water resources, particularly in arid regions. The Sahara of North Africa, which is one of the driest regions on Earth, experienced several pluvial conditions in the past that could have stored significant amounts of groundwater. Thus, harvesting the stored water by revealing the groundwater prospective zones (GWPZs) is highly important to water security and the management of water resources which are necessary for sustainable development in such regions. The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), Advanced Land Observing Satellite (ALOS)/Phased Array type L-band Synthetic Aperture Radar (PALSAR), Tropical Rainfall Measuring Mission (TRMM), and Landsat-8 OLI data have all successfully revealed the geologic, geomorphic, climatic, and hydrologic features of Wadi El-Tarfa east of Egypt’s Nile River. The fusion of eleven predictive GIS maps including lithology, radar intensity, lineament density, altitude, slope, depressions, curvature, topographic wetness index (TWI), drainage density, runoff, and rainfall data, after being ranked and normalized through the GIS-based analytic hierarchy process (AHP) and weighted overlay methods, allowed the GWPZs to be demarcated. The resulting GWPZs map was divided into five classes: very high, high, moderate, low, and very low potentiality, which cover about 10.32, 24.98, 30.47, 24.02, and 10.20% of the entire basin area, respectively. Landsat-8 and its derived NDVI that was acquired on 15 March 2014, after the storm of 8–9 March 2014, along with existing well locations validated the GWPZs map. The overall results showed that an integrated approach of multi-criteria through a GIS-based AHP has the capability of modeling groundwater resources in arid regions. Additionally, probing areas of GWPZs is helpful to planners and decision-makers dealing with the development of arid regions.
Read full abstract