The results from the preliminary set of experiments in which a new video sampling apparatus was used are reported. With the aid of this apparatus experiments were carried out to measure the maximum visual temporal integration time (critical duration) at various background intensities (0·034–34 cd m−2). The aim was to determine to what extent this phenomenon is attributable to either ‘central’ or ‘peripheral’ events. The extended integration period found for the number recognition task is interpreted as evidence of a ‘central’ process; to follow the argument further, an attempt was made to demonstrate information integration using a rotating form in a similar identification–discrimination situation. Monocular, binocular, and dichoptic arrangements were employed, and the amount of dichoptic summation of form information, achieved by both normal and strabismic subjects without stereoscopic depth perception, was used to test two theoretical models of binocular fusion. In addition, stereoscopic depth was generated with uncorrected sampling of the left and right images, which may be due to the action of a ‘fusion hierarchy’. Signal detection theory is suggested as a possible solution to the problem of expectation effects in identification-threshold experiments.
Read full abstract